Bahnübergangsbelagsystem BETOcross®

EINBAUANWEISUNG

Die folgenden Anweisungen beziehen sich auf typisierte Einbausituationen. Unter Umständen kann es erforderlich werden, von diesen abzuweichen. Für solche Fälle ist von RAILBETON eine schriftliche Bestätigung einzuholen. Liegt diese nicht vor, erlischt die Gewährleistung. Alle Abweichungen sind zu dokumentieren.

Bei Nichteinhaltung der folgenden Einbauanleitung erlischt die Garantie seitens des Herstellers.

Die Art der Ausführung des Einbaus des BÜ Belages ist abhängig von der Bauklasse der gleisquerenden Straße. Bereits bei der Planung des entsprechenden Bahnüberganges ist deshalb die Einordnung in die entsprechenden Bauklassen entscheidend da sich mit dieser der Aufbau des Systems ändert.

Für den Einbau werden folgende Klassifizierungen unterschieden:

Beschreibung

BETOcross® H hoch belastete Bundesstraßen

- → sehr hoher Anteil an Schwerlastverkehr nach Bk32
- → Lebensdauer 15 Jahre

BETOcross® F Bundesstraßen und stark frequentierte Verbindungsstraßen

- → starke Frequentierung mit einem Schwerlastverkehrsanteil nach Bk3,2
- → Lebensdauer 30 Jahre

BETOcross® D Verbindungsstraßen mit vorwiegender Radlastbegrenzung von 5 t

- → starke Frequentierung durch Radlasten 5 t, Schwerlastverkehr nach Bk0,3
- → Lebensdauer 30 Jahre

BETOcross® P Fußgängerbereiche mit Sonderüberfahrung von max. 5 t Radlast

- → untergeordnete BÜ's für max. 5 t Radlast nicht als Dauerbeanspruchung
- → Lebensdauer 50 Jahre

Qualitätskriterien

Für den Einbau des Systems müssen folgende Voraussetzungen erfüllt sein:

- typisierte Schwellen sind im einzudeckenden Bereich im Abstand von 60 cm zu verlegen
- Gleis muss in seiner Endlage gebracht sein
- Gleisschotter bis Oberkante Schwelle auffüllen und verdichten
- über die Schwellenkontur überstehender Schotter ist zu entfernen
- Gleisradius >140 m

Überwege mit schiefwinkliger Überfahrt < 75° müssen durch den Hersteller geprüft werden.

Beschreibung der Teilkomponente

Querverschiebesicherung

- → Querverschiebesicherung Anfang Anordnung Stirnseite Start in Verlegerichtung, mit angeschweister Lasche für Auflaufkeil
- → Querverschiebesicherung Mitte (nur für das System H und F) Anordnung in den Plattenstößen
- → Querverschiebesicherung Ende Anordnung Stirnseite Ende in Verlegerichtung, mit angeschweister Lasche für Auflaufkeil
- → dient der zusätzlichen Verdüblung der Platten untereinander
- → zusätzliche Lagesicherung

<u>Schienenkammerstein</u>

- → zur Sicherstellung der genauen Lage der Platte in Gleisachse (Querverschiebsicherung)
- → Verschluss der Schienenkammer und Abdichtung der Spurrille gegen Materialeintrag
- → Material Kunststoff

<u>Verspannstangen</u>

- → dienen der Verspannung aller Platten des Bahnüberganges in Gleislängsrichtung
- → verhindern ein Verdrehen bzw. Verschieben einzelner Platten

Entkopplungsscheiben

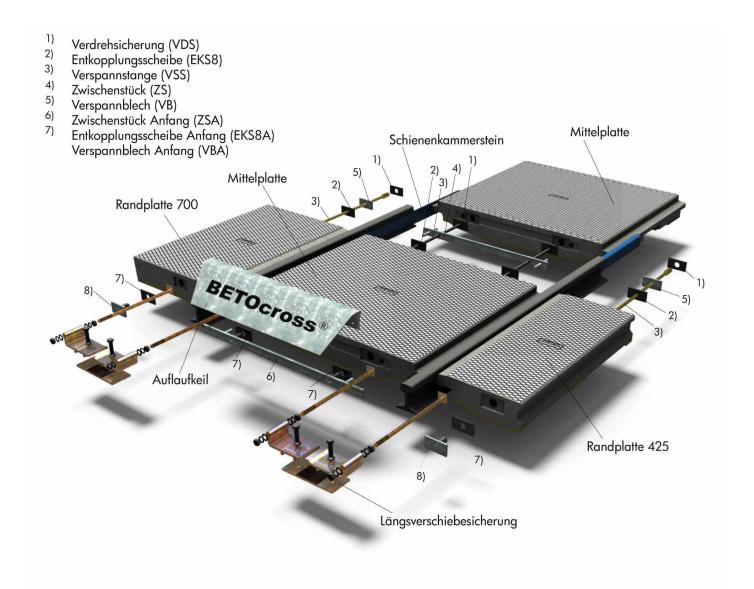
→ entkoppeln und bilden eine elastische Fuge beim Verspannen des System zwischen dem Material Stahl der Querverschiebesicherung und dem Material Beton der Systemplatte

Verspannblech

- → bilden das Widerlager beim Verspannen der Randplatten
- → bilden das Widerlager beim Verspannen der Mittelplatten vom Typ D und P
- → Verspannblech Mitte für zweiseitige Montage
- → Verspannblech Anfang Anordnung Stirnseite Start in Verlegerichtung, mit angeschweister Lasche für Auflaufkeil nur für die Systeme D, P
- → Verspannblech Ende; Anordnung Stirnseite Ende in Verlegerichtung, mit angeschweister Lasche für Auflaufkeil **nur für die Systeme D, P**

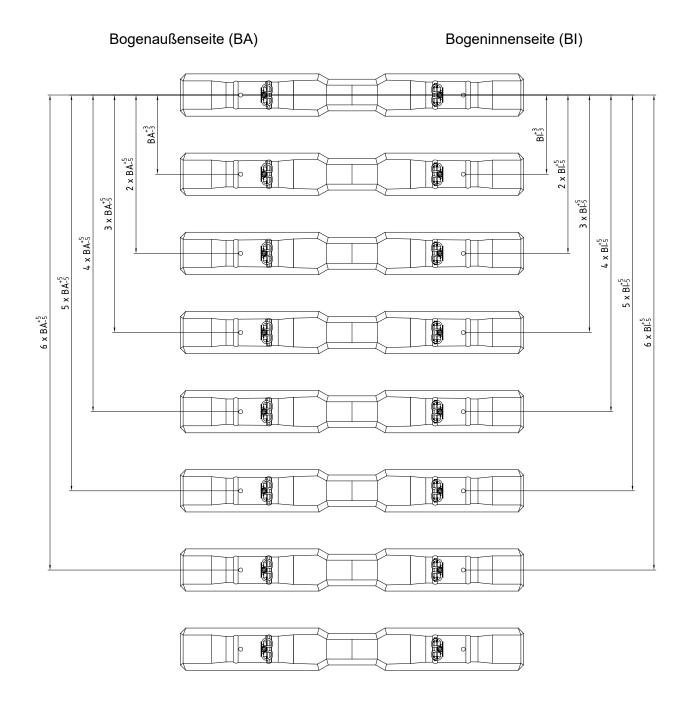
Distanzblech

→ im Bereich von Bögen werden diese zur Herstellung einer definierten Keilfuge eingesetzt


Zubehör

Auflaufkeil

Der Auflaufkeil schützt den Bahnübergangsbelag vor Zerstörung durch herabhängender Kupplungen. Er wird an den Außenseiten in dafür vorgesehene Laschen eingehängt. Dieser ist baugleich mit dem des Typzugelassenen GÜP-System.


Längsverschiebesicherung

Fixiert das System in Gleislängsrichtung. Die Längsverschiebesicherung ist baugleich mit der des zugelassenen System GÜP.

1.) Einrichten des Schwellenabstandes von 60 cm

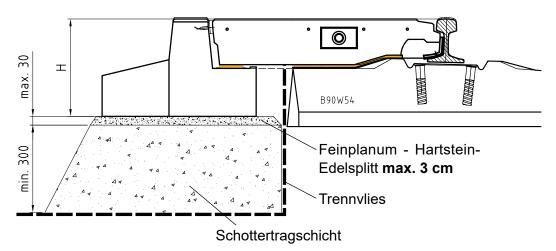
Es ist wie folgend dargestellt vorzugehen und die angegebenen Toleranzen sind einzuhalten!

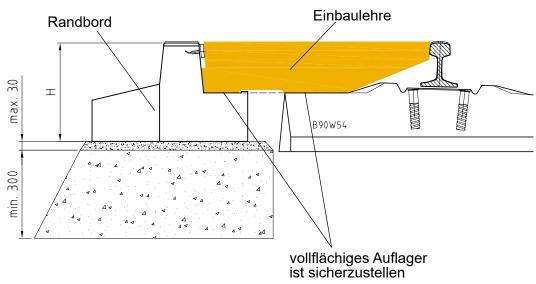
Für das Einmessen des Schwellenabstandes (SA) ist immer die Achse des äußeren Schwellenschraubendübels heranzuziehen.

Radius Gleis	Abstand Bogenaußenseite (BA) [mm]	Abstand Bogeninnenseite (BI) [mm]
unendlich	600	600
500	601	599
300	602	599
250	603	599
200	603	598

	Radiu	s 500	Radiu	s 300	Radiu	s 250	Radiu	s 200
	BA [mm]	BI [mm]						
2 x SA	1.202	1.198	1.204	1.1198	1.206	1.198	1.206	1.196
3 x SA	1.803	1.797	1.806	1.797	1.809	1.797	1.809	1.794
4 x SA	2.404	2.396	2.408	2.396	2.412	2.396	2.412	2.392
5 x SA	3.005	2.995	3.010	2.995	3.015	2.995	3.015	2.990
6 x SA	3.606	3.594	3.612	3.594	3.618	3.594	3.618	3.588
7 x SA	4.207	4.193	4.214	4.193	4.221	4.193	4.221	4.186
8 x SA	4.808	4.792	4.816	4.792	4.824	4.792	4.824	4.784
9 x SA	5.409	5.391	5.418	5.391	5.427	5.391	5.427	5.382
10 x SA	6.010	5.990	6.020	5.990	6.030	5.990	6.030	5.980
11 x SA	6.611	6.589	6.622	6.589	6.633	6.589	6.633	6.578
12 x SA	7.212	7.188	7.224	7.188	7.236	7.188	7.236	7.176
13 x SA	7.813	7.787	7.826	7.787	7.839	7.787	7.839	7.774
14 x SA	8.414	8.386	8.428	8.386	8.442	8.386	8.442	8.372
15 x SA	9.015	8.985	9.030	8.985	9.045	8.985	9.045	8.970
16 x SA	9.616	9.584	9.632	9.584	9.648	9.584	9.648	9.568
17 x SA	10.217	10.183	10.234	10.183	10.251	10.183	10.251	10.166
18 x SA	10.818	10.782	10.836	10.782	10.854	10.782	10.854	10.764
19 x SA	11.419	11.381	11.438	11.381	11.457	11.381	11.457	11.362
20 x SA	12.020	11.980	12.040	11.980	12.060	11.980	12.060	11.960
21 x SA	12.621	12.579	12.642	12.579	12.663	12.579	12.663	12.558
22 x SA	13.222	13.178	13.244	13.178	13.266	13.178	13.266	13.156
23 x SA	16.823	13.777	13.846	13.777	13.869	13.777	13.869	13.754
24 x SA	14.424	14.376	14.448	14.376	14.472	14.376	14.472	14.352
25 x SA	15.025	14.975	15.050	14.975	15.075	14.975	15.075	14.950
26 x SA	15.626	15.574	15.652	15.574	15.678	15.574	15.678	15.548
27 x SA	16.227	16.173	16.254	16.173	16.281	16.173	16.281	16.146
28 x SA	16.828	16.772	16.856	16.772	16.884	16.772	16.884	16.744
29 x SA	17.429	17.371	17.458	17.371	17.487	17.371	17.487	17.342
30 x SA	18.030	17.970	18.060	17.970	18.090	17.970	18.090	17.940

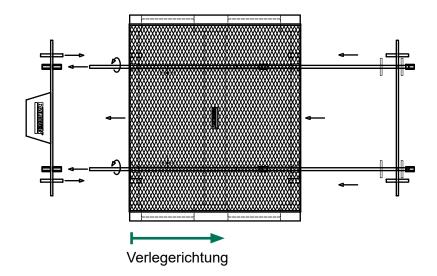
SA = Schwellenabstand

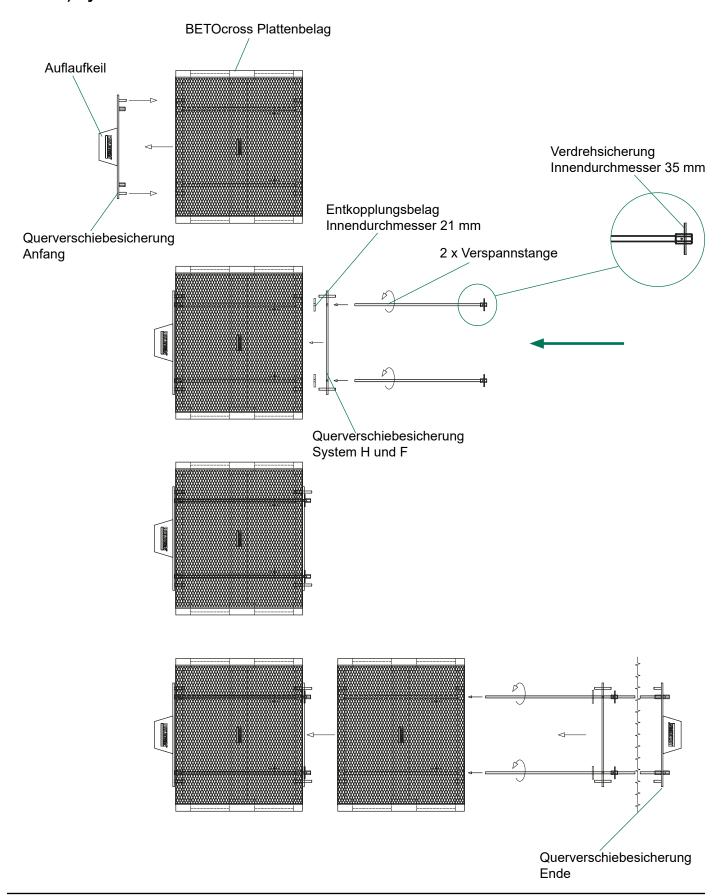

2.) Einbau T-Borde bei Verwendung des Randplattensystem 700


- → Rückbau des alten Straßenbelages von ca. 1,40 m von der Schienenaußenkante
- → Einbau einer Tragschicht (0/32 / 0/64) in der Mindeststärke von 30 cm
- → mittels Plattendruckversuch ist auf der verdichteten Tragschicht ein E_{V2}-Wert von 100 MN/m² nachzuweisen
- → die endgültige Bettungsschicht in Form eines Splittbettes 2/5 darf eine max. Stärke von 30 mm nicht überschreiten, das Feinplanum ist mit geeigneter Technologie auf seine Höhe maßgenau (+/- 1 mm) abzuziehen
- → Einbau der Borde darf erst nach Stopfgang und **Endlage** des Gleises erfolgen

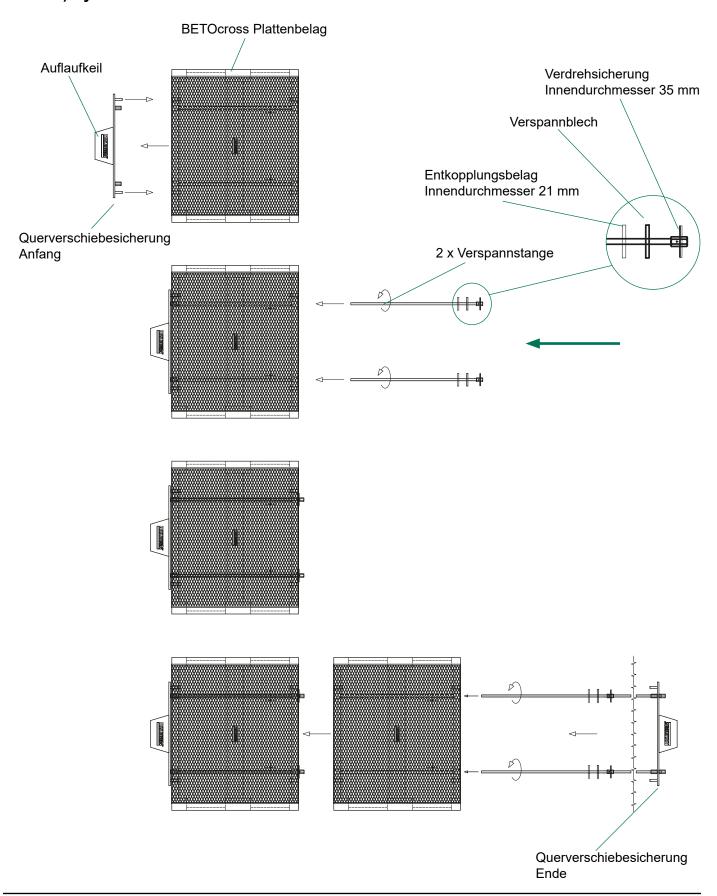
2.1) Einbau der T-Borde

- → die Borde sind mit Hilfe der Einbaulehren zu verlegen
- → das flächigen Aufliegen der Lehre im Schwellenkopfbereich und im Bordbereich ist sicherzustellen und zu kontrollieren

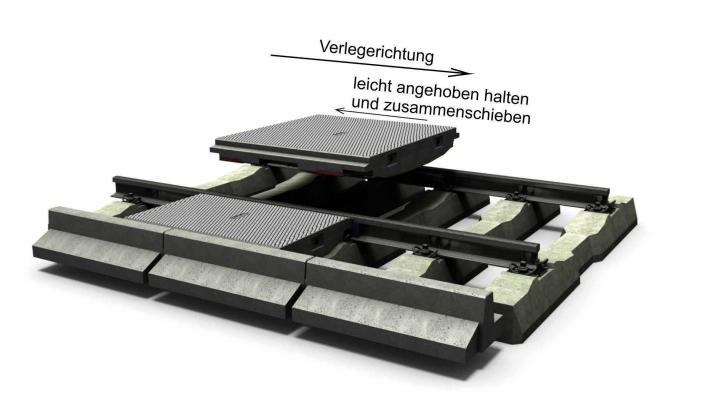

Für den Einbau der T-Borde ist der Auszug aus dem "Teilekatalog BÜ Belag BETOcross" Seiten 28 und 29 zu beachten!


3.) Montage der Platten

- → Bereich der einzudeckende Fläche wird markiert
- → ist eine Verlegung beginnend von der Mitte aus vorgesehen (z.B. bei breiten Straßen mit halbseitiger Sperrung) wird die Mitte markiert
- → die **Schienenkammersteine** sind über die gesamte Länge des einzudeckenden Bereiches in die inneren Schienenkammern einzulegen
- → die erste Platte ist entsprechend der Verlegerichtung auf die Schwellen / Schienenfuß aufzulegen
- → bei einer einseitigen Verlegung (a.) ist das entsprechende Verspannblech oder Querverschiebesicherung mit Lasche für den Kupplungsfänger zu montieren
- → bei einer zweiseitigen Verlegung (b.) ist das entsprechende mittlere Verspannblech zu montieren (b.)
- → alle Platten werden untereinander über die Verspannstangen verbunden
- → die Verspannstangen entsprechend den folgenden Skizzen sind die weiteren Platten einzubauen

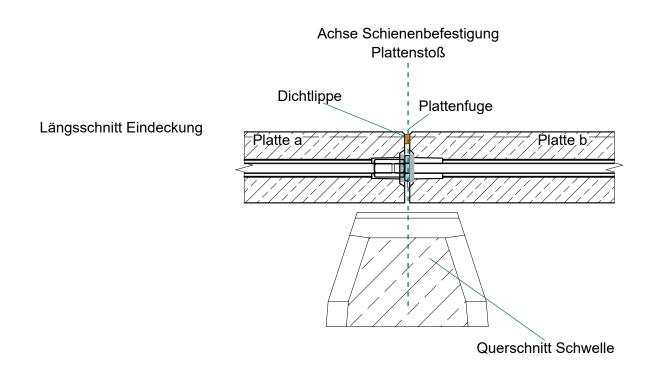

4.) Verspannung

4.1) System BETOcross® H und F

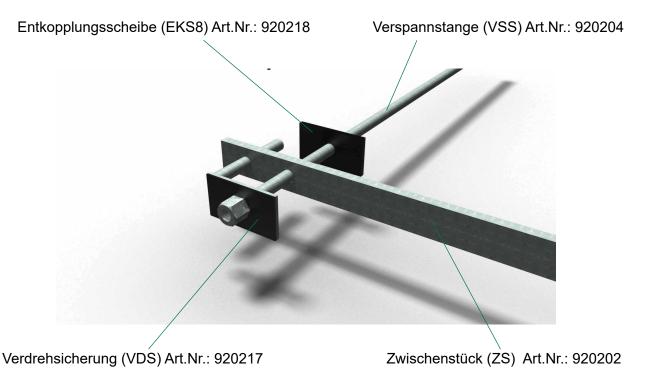


4.) Verspannung

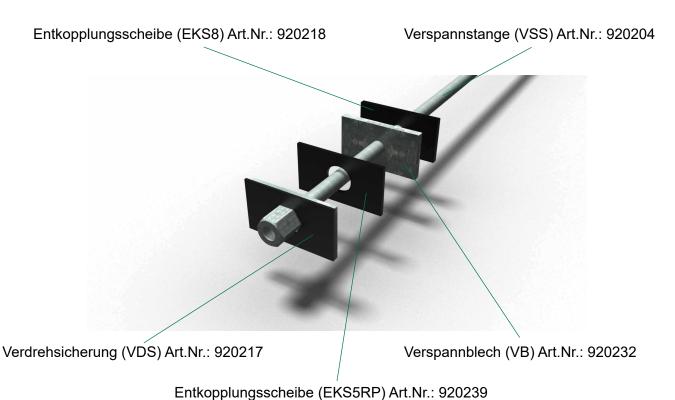
4.2) System BETOcross® D und P

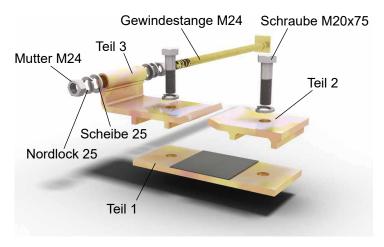


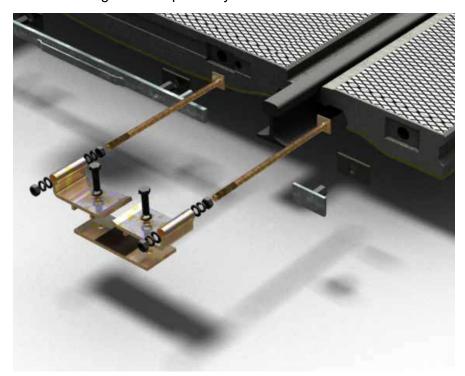
Weitere Hinweise zur Verlegung



Endlage aller Platten im Bezug zur Schienenbefestigung


Die Achse [Fuge der Eindeckung] ist mit der [Achse Schwellenschraube] auszurichten.


Mittelplatten - Anordnung Montagematerial zur Verspannung der Platten

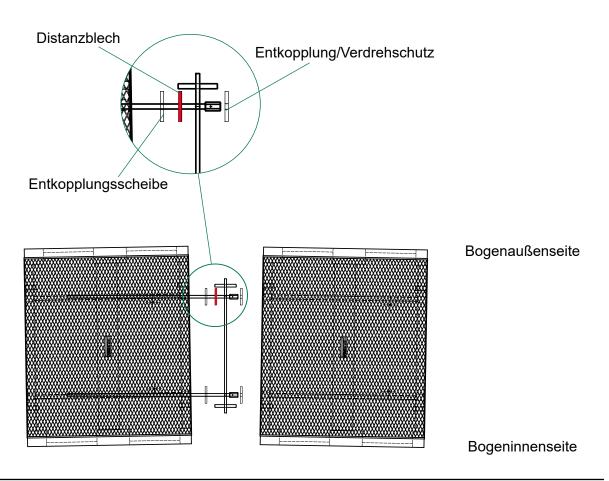

Randplatten - Anordnung Montagematerial zur Verspannung der Platten

5.) Aufbau Längsverschiebesicherung

Einbau Längsverschiebesicherung mit Randplattensystem

6.) Strassenanschluss

Zwischen Bord und Deckschicht ist ein dauerelastischer Fugenverguß oder ein Tokband einzubauen!


Hinweise zum Einbau des Systems in Bögen

Das Sytsem **BETOcross**® kann bis zu einem Gleisradius von > 140 m eingesetzt werden. Es ist zu beachten, dass mit kleiner werdendem Radius die entsehende Keilfuge größer wird. Um den Radius herzustellen sind im äußeren Verspannpunkt der Mittelplatten (Bogenaußenseite) Distanzbleche beizulegen.

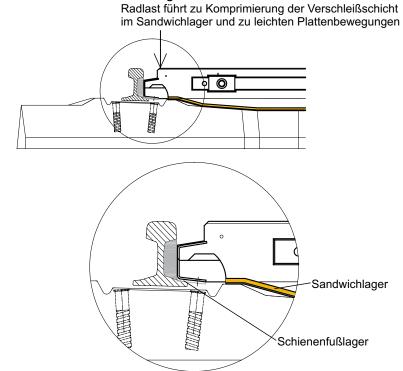
Enstehende Keilfuge und zu verwendendes Distanzblech in Abhängigkeit vom Radius:

Radius	Keilfuge im Plattenstoß	Dicke Distanzblech	Einsatz Randplatten
[m]	[mm]	[mm]	
800	2,0	1,0	
500	3,0	2,0	
400	4,0	2,0	
300	5,0	3,0	
250	6,0	3,0	(bedingt einsetzbar)
225	7,0	4,0	(bedingt einsetzbar)
200	8,0	4,0	(bedingt einsetzbar)
175	9,0	5,0	(bedingt einsetzbar)
150	10,0	6,0	(bedingt einsetzbar)
140	11,0	6,0	(bedingt einsetzbar)
< 140	System nicht einsetzbar		

Lage der Distanzbleche im außeren Verspannpunkt der Mittelplatten:

Wartungsanleitung

Grundlegende Erläuterung zum System:


Das Sytsem **BETOcross**® ist ein Schwellen- und Schienenfuß gelagertes System. Die Lagerflächen zwischen der Bahnübergangsplatte **BETOcross**® und Schwelle / Schienenfuß sind mit speziell bemessenen elastischen Sandwichlagern aus "elastischen Kunststoff" versehen.

Durch die grosse Auflagerflächen werden die eingetragenen Kräfte bei Überfahrung auf eine große Fläche verteilt. Somit reduziert sich die Flächenpressung in den Kunsstofflagern extrem, was den Verschleiß dieser reduziert, bzw. bei den verwendeten hochwertigen Materialien nahezu ausschließt.

Die Schienenfußlagerung dient dazu beim Auffahren des Rades auf den Kantenbereich der Platte die Flächenpressung der Auflager im Bereich der Schienenbefestigung zu reduzieren und gleichzeitig ein Kippeln der Platte bei Überfahrt zu minimieren.

bei Überfahrt zu minimieren.

Die stirnseitigen Stöße der Platten werden mit Fugenscheiben gegen Materialeintrag geschlossen. Diese sind aber nicht wasserdicht. Ihre Lage ist mechanisch mit der Platte punktuell fixiert. Durch Plattenbewegungen kann es jedoch zu einem welligen Erscheinungsbild der Fugenscheibe kommen. Bei Überfahrung werden die Fugenscheiben in der Regel wieder zurück in ihre ursprüngliche Lage gedrückt.

Bewegungen der Platte sind auf die erforderliche elastische Lagerung der Platte zurückzuführen und sind kein Anzeichen von Verschleiß oder Einschränkung der Gebrauchstauglichkeit.
Sollten Sie sich jedoch unsicher in der Beurteilung der Lagsicherheit des Systemes sein, zögern Sie nicht und kontaktieren Sie uns. Denn Ihre Zufriedenheit ist uns wichtig.

Wartung der Mittelplatten:

Auf Grund der Konstruktion sind vom Hersteller **keine** Wartungsarbeiten vorgeschrieben beziehungsweise erforderlich.

Grundlegend ist jedoch zu beachten, dass bei einem erforderlichen Ausbau des System gegebenfalls Montageteile erneuert werden sollten, um auch weiterhin eine sehr hohe Lebensdauer des Belages sicherzustellen.

Bei einem Aus-/Einbau des Systemes mit einer Liegedauer > 6 Jahren **kann** es erforderlich werden Montageteile zu erneuern:

- Verspannstangen mit EKS 8 und Verdrehsicherung
- Erneuerung des Verschleißlagerschicht am Sandwichlager

Der Zustand sollte hier jeweils geprüft werden, da dieser aus unseren Erfahrungen stark schwankt in Abhängigkeit Lage des BÜ (Tausalzeinsatz) und Art der Belastung (schiefwinklige Überfahrung).

Austausch von Verspannstangen kann erforderlich werden:

- bei Beschädigung des Gewindes durch Schwergängigkeit / Korrossion
- generell starke Korrossionsschäden

Austausch der EKS 8 / Verdrehsicherung:

 die Entkopplungsscheibe EKS 8, kann durch lange Benutzung in ihrer Geometrie deformiert sein, so dass eine Wiederverwendung nicht angebracht ist, ebenso verhält es sich mit der Verdrehsicherung

Austausch Erneuerung Verschleisslager:

- hier ist entscheidend wie gut der Ein- und Ausbau des Systmes erfolgte
- ebenso haben Einflüsse die regionale Lage und Art der Belastung der BÜ-Querung auf die Wiederverwendbarkeit
- das Verschleisslager hat generell die Funktion Lagetoleranzen durch maximale Verformungen auszugleichen und diese zeigen somit beim Ausbau einen gewissen Verschleiss, dies ist technisch so gewünscht und hat bei einem eingebauten System keine negativen Auswirkungen -> im Gegen teil: durch den Veschleiss des Verschleisslagers passt sich das System den Randkriterien wie Unhebenheit an und über eine längere Nutzungsdauer werden Plattenbewegungen minimiert

Zögern Sie nicht mit Ihrem Feedback und Anregungen zu Verbesserungen, nur so können wir besser werden.

RAILBETON HAAS GmbH ■ D-09114 Chemnitz ■ Fischweg 27 Telefon +49 0371 4725-0 ■ Telefax +49 0371 4725-100 info@RAILBETON.de ■ www.RAILBETON.de

